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Up to the present time, thirteen particular solutions of this problem were
reported by various authors. These solutions can be devided into two groups.
First group will contain the solutions found under the condition that the
center of gravity lles on the principal axis of the ellipsold of gyration.

We find there solutions by Zhukovskii [1] (¥), Lagrange, Kowalewskl [ 3],
Chaplygin [4], three solutions utilizing polynomial integrals [5) and the
solution of Sretenskii [6] generalizing the Gorlachev-Chaplygin case of inte~
grability [7]. In the remailning five solutions, conditions defining the
position of the center of gravity are less restrictive. It can be arbitrary
when the rotation of the body is uniform (solution with three linear inte-
grals [8]). In the solution with two linear integrals [9] and in three solu-
tions with one linear integral [10 to 12], the center of gravity lles on the
principal plane. Last five equations have a common feature. In each of them
a linear integral occurs.

The solution presented in this paper is outside the first group since the
center of gravity lles on the principal plane (not on the principal axis).
Integrals in 1t are however, unlike in the second group, nonlinear.

The problem of motion of a heavy rigid body with one fixed point, is
reduced to a system of two differential equations of first order [13]. This
system 1s equivalent to one differential equation of second order, which 1s,
in general, very complex. If however one of the special coordinate axes
coincides with the principal axis, then the problem can be reduced to one,
relatively simple equation. This method is utilized to obtain another par-
ticular solution to our problem.

l. Let A, A, and A, be a gyrostatic moment constant with respect to
the body and x + X , y + 1, and z + )\, be the angular moment of the

*) Zhukovskii gave the integrals and geometrical interpretation of the motion
of the body for the case when the center of gravity coincides with the fixed
point, and the gyrostatic moment 1s arbitrary. When the latter becomes zero,
Zhukoveklil's solution reduces to Euler's solution. Quadratures in Zhukov-
8ki's solution were later referred to by Volterra [2].
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system relative to the fixed point. Let further vy , y, and vy, be an inva-
riant vector in the direction of the force of gravity, the modulus I of
which is equal to the product of the mass of the system anu the distance of
the center of gravity from the fixed point. Denoting the components of the
gyration tensor in the special coordinate system by @, a,, ¢, 2, and J,,
we can write the equations of motion in the form [13]

dz [ dt = (a2 + byz) (v + M) — (ay + b12) (2 + Ay) (1.9)
dy [ dt = (az + by + 8y2) (z + Ay) — (agz + b2) (. + A) — 71,
dy/dt = (agz + by} 7y — (0¥ + 012} 7o (1.2}

dy;/dt = (az -+ by + byz) 1o — (822 -+ By2) 7

Out of six equations, we have written above only four, which shall be
used later. We shall replace the remalning two equations with the integrals

azt + ayy? -+ agz? 4 2 (byy + byz) x — 2y = 2E (1.3)
E+ENT+@FMnt ="k (1.4)
Let one of the special coordinate axes {e.g. the third one) coincide with
the principal axis
b2 == {) (1'5)
and let the gyrostatic moment be orthogonal to this axis
Ay == 0 1.6)

Conditions {1.5) and {1.6) represent exactly the restraints imposed »n
the parameters of the system, in presence of which the problem reduces to
one, relatively simple equation.

From (1.1) (in the following the subscript of b, willl be omitted), we
have
dy/dt=z[(a— a) z+ by — ahl — 1, 1.7
dz/dt= — zX (y, 2), X (y,2) = (a1 — a)) y + bz — a0,
elimination of ¢ results in
e = z%, Y (y(e), 1)= BByt (b — aad)y+ L B — e n, (18)

where n, 18 a constant. Substitution of (1.5) to (1.8) into (1.2) elimi-
nates from the latter the variadble =z

4 d dY
X%+a27l=(aly+b2)%, X,a%-—az’r:~(by+ax)ﬁ~
and gives v (° + inr) . ¢ ds
= intyexpias\ — 2°
Te==(Y Ti)expi 2§ X (7o), 6) -+
\ 5 @00 oo
Fly(3), s (y(s), o . S dt i
+S (o) 9) 8 (expia| - e ) do (1.9)
Xo a
vhere (as — ib) y (z) + (b — ia)
Fly), z)={1— - 1.10
(), =) iy (), @) (.10}
let us now eliminate x from the integrals (1.3) and (1.4)
dY
ay22 = 2y + 2E —~ ayy® — 2bay — az?, (z+Ny+ @+t 2=k {11
to obtain

{2 Do+ Wbt @+ M) arn = ok - (- ey +an — 28) T
x

i dx

Real part of the product
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(1 + m){u—+(x+x)ao—z(y+mag}

is found on the left~hand side, hence utilizing (1.9), we obtain

x

R{LdY*4ZLLMV—My+kﬂ%]BV+¢ﬁ”“pmﬁ Yﬁﬁ%}7+

Xo

X x
S P69 = (y(c), ? exPlazg X(y(), 1) (r) r) }

Q

= ask - (ay® + 2bzy + az? — 2E) ‘%’i (1.12)
x

Substituting into the latter X, ¥ and F from (1.7), (1.8) and (1.10),
we obtain integro-differential equation defining the function v = yix)-
With the latter known, the relation between y and and x , can be
found from (1.9)., Next =z = z{x) i1s determined by (1 11), afterwhich (1.8)
gives us y,= y,(x) and (1.7) produces the relationship between x and ¢t
after completing the quadrature.

2. Analogous results can be obtalned by another method mentioned in the

introduction. Two equations which under the conditions (1.5) and (1.6) have
only even powers of =» , are

v+m) X% —[(z+ x)a2+2”g—]z2=®<y. z)

{% X ’_”_Z 4+ (a1y 4 bz) (z + A) — (ax + by) (y + 7»1)}2+ (2.1)
+ (ZY ) 22+ { i (ax? -+ ary? -+ agz?) + bry— E}2= r2

D (y, 2) = 2 (az + by) (¥ + M) + (2 + M) (a2® — ayy® — 2a 0y — 2bhyz — 2E) — 2k

First of them 1s linear in #° . Substituting

e () Y 0.0/ d3,
“ exp) V@ TG T

v D (y(s), o) . v (v -+ Ayas + 2dY (y (x), 1)/ dr
+§_ @6+ WX ¥(), 5) (exe 5 @@+ M X (y (), 1) ) ds

into (2.1), we obtain the equation connecting and x , equivalent to

v
(1.12). In the following however, (1.12) will be found more conveneient in
use.

3. If ay= a,, Equation (1.12) can be radically simplified. This condi-
tion, together with (1.5), means that the first coordinate axis on which we

have the center of gravity, 1s perpendicular to the circular cross section
of the gyratory ellipsoid fl

We shall now introduce a new variable ¢
z=F + %iy (= a,/b) (3.1)

Relationships from Section 1, will now take the form (3.2)

YE —n
bE

X =0bE, y(Y (€),8)=

—“;’“1 (% 4 2xA1) 4 %A (n_.n.+“—“1 — aIMu)
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(500
Sm— Y0 I0.0 i) ) (£ ey

T+Hin=(" +£‘n)< > b 17,’ e
= 2y 2B o — 2 05+ aha) g — a (5 + xhy)?
v = zdY [ dE, dS [ dt = — bk (3.4
Dependence of ¥ on ¢ is found from Equation

,,,,,

{[2£ o (B - sy by (Y E) Lh)j! {(“f‘j + i1y) <”§;>i1+
+

{a; — ibyy (Y (1), T} (b-—fa} (T -+ %k} (_E, ZixdY
bt v T

S, SV

= apk -} {ay? | 2 (B + axh)y - a (£ - why) — 2E) ‘%

&, Simplest particular solutions of (3.5) can be sought in the class of
polynomials, Let us assume for example, that

Y () — n = c82+ 268 + ¢ (4.1

{constants o, g, and o, which are to be determined, are assumed real).
Then, from (3.2) we have

by=(c-~ S5 e 2 b (@ ks o+ (4.2)
g
Putting (4.1) and (%.2) into (3.3) and choosing the constant y°+ ty,°

80 that the resulting expression does not contain ¢ in the {x-th power,
we obtain (4.3)

1 = 5o+ i + 5E2, rw2;£1+s+<la+saz *2{M+c(n—}xh)}

2
=T anb {(31 [2a:b% 4 (b2 - 2a;® — aar) W] ¢ (Baze 4 b2 + a1%) 5‘31}
__ Bage - 40 4 3ar® —aaqy

4b? —‘i— aﬁ
9 52— 1
sy = + {W’n 20t <a;k -+ _“_f%_“‘_’_l__ 7\.1> C]} (4.4)
, e [(a® =) A —(a —a)) ] e+ [B{a* — b c—(a—a) (¥ 4+ ai)] o
1 (b* = a2 b
_ 2{a®— 2% ¢ —(a — ay) @ — 2ab®
s = (@5 T a%) b ¢
Now (3.4) becomes
2
b2g? = — %”—; e % “+ my - mgt + mE? (4.5)
2
T2 = 5 <C + %) V = co® + mi% 4 maE* - mgE? |- mEs (4.6)
5 dE,
= — 4.7
) V — o F mi€ + maE? 4 mgES + mE? 0
where %o

my = — 2¢0{2¢; + a,h — (a — a;) ®hy + Ay}

2b% — gy b2 e a2 b2 L ga; — ay®
myg=—2 _..-.gl-x—l-(ccn+2c12)_4b3\,w+4( o ! At + bl L 7\4)01—;‘*

(a —_ al) ¢o -+ (bz—* aay -+ 012) [(a — al) Hhy — 9}\.01] — a2 ()«2 -+ A:l ) -
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(4.8)
nig = (—b%m {2(5b% — a1?) 1 + (302 — @) axh + [8% + (201 — @) arb + (6 —az) a1k M}
4 2(a — ay) 1 — (26% -+ a1®* — aa) A — {(3a; — a) b+ (a—a1)%] M

6c -+ 2a; —a 1
m o= 2—4%:t—aiz——b2c~cz+(a—al)c— Z—(a——a;)z—bz
Relations {3.1), {(%.2), (%.5), (%.3) and (%4.6) give the basic variables
X, Us &, ¥s v: and vy, as functions of £ , which, by {%.7), is an elliptic
function of time,

We can complete the solution by showing conditions satisfied by the coef-
ficlents ¢, o, and ¢, of the polynomial (4,1). The latter should convert
23.5; into an identity. Putting (4.1) into (3.5), let us utilize (4.7) and

4.3). Comparing the coefficlents of like powers of £ , we obtain six
relations. Two of them vanish for any ¢, oy and g, while the remaining
four can, using the notation of (%#.%) and (4.8), be written as

bis - (c — a;al )bs’ -~ 2me =0
2mey - 2mge + bPs; + {(@1h -+ BA) bs - (c - = : = ) bs’ -
-+ [2be; - aybA — (8 — a1} ajhg + b*M] 5" =0 4.9
Dngey + 2mao - By (ks -+ B by +- (0 — ) bey' -
+ [2bcs 4 abh — (@ — ay) ayhy = b2\ 51’ + cobs” =0 (4.10)
bl = —f—{mzcl +me+aa (e — 2 (aha + BA) o+
+ [2e1 4+ @y - bdg — (@ — ag) %] s’ + oSy’ (4.11)

Putting (4.4) and (4.8) into (4.9) we find ¢ and ¢,
6c=2R —a— a;

6 (4b% 4- ;%) bcl={ﬁfg"—‘2 (663 + (2a; — a) &3] — (763 + a1?) al} bA —

b2 L ay?
_{ =

[(Tay — 2a) b? + 24y (a;2 — aay + a?)] — 2b% — 2 (3a; — a) a1b? — (a + @) aﬁ‘} M

R == 4 V 362 + a4 — aag + a?

Energy constant £ 1s included in m, and can be found from (4.10), while
constant x 1is given by (¥.11).

Substitution of (4.3) and (4.6) into
?Hnt+ =10
gives the equation connecting oo and T

s + g%+ 4 %GL s+ “bi— {cr®mg - 200y — eBep?) =T2
and the resulting solution has eight independent parameters
ayay, b, A AT, B0
Parameter 2, 1s found from (4.7), while a6y will appear during the deter-

mination of the position of the body in space, based on kinematic equations
presented 1n Sections 1.5 and 1.6 of [13].
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